Neural Architectures for Multilingual Semantic Parsing

نویسندگان

  • Raymond Hendy Susanto
  • Wei Lu
چکیده

In this paper, we address semantic parsing in a multilingual context. We train one multilingual model that is capable of parsing natural language sentences from multiple different languages into their corresponding formal semantic representations. We extend an existing sequence-to-tree model to a multi-task learning framework which shares the decoder for generating semantic representations. We report evaluation results on the multilingual GeoQuery corpus and introduce a new multilingual version of the ATIS corpus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilingual Semantic Parsing : Parsing Multiple Languages into Semantic Representations

We consider multilingual semantic parsing – the task of simultaneously parsing semantically equivalent sentences from multiple different languages into their corresponding formal semantic representations. Our model is built on top of the hybrid tree semantic parsing framework, where natural language sentences and their corresponding semantics are assumed to be generated jointly from an underlyi...

متن کامل

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Multilingual Semantic Parsing with a Pipeline of Linear Classifiers

I describe a fast multilingual parser for semantic dependencies. The parser is implemented as a pipeline of linear classifiers trained with support vector machines. I use only first order features, and no pair-wise feature combinations in order to reduce training and prediction times. Hyper-parameters are carefully tuned for each language and sub-problem. The system is evaluated on seven differ...

متن کامل

Multilingual Dependency Learning: A Huge Feature Engineering Method to Semantic Dependency Parsing

This paper describes our system about multilingual semantic dependency parsing (SRLonly) for our participation in the shared task of CoNLL-2009. We illustrate that semantic dependency parsing can be transformed into a word-pair classification problem and implemented as a single-stage machine learning system. For each input corpus, a large scale feature engineering is conducted to select the bes...

متن کامل

Multilingual Natural Language Generation within Abstractive Summarization

With the tremendous amount of textual data available in the Internet, techniques for abstractive text summarization become increasingly appreciated. In this paper, we present work in progress that tackles the problem of multilingual text summarization using semantic representations. Our system is based on abstract linguistic structures obtained from an analysis pipeline of disambiguation, synta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017